SUBSTRATE NOISE FULL-CHIP LEVEL ANALYSIS FLOW FROM EARLY DESIGN STAGES TILL TAPEOUT

Hagay Guterman, CSR
Jerome Toublanc, Ansys
Hagay Guterman, CSR
Hagay Guterman is a senior signal and power integrity engineer at CSR. He has prior experience as an analogue and circuit designer. He presently works on signal integrity in highly dense mixed signal ICs inside and outside of the DIE.

Hagay.Guterman@csr.com

Jerome Toublanc, Ansys
Jerome Toublanc is Principal Product Engineer for ANSYS providing technical support in Europe and driving the development for Power and Noise solutions for full System Integrity. Prior experiences focused on physical implementation tools as well as analog/digital full-custom design.

Jerome.Toublanc@ansys.com
Agenda

• Introduction
 – Technology and ASIC Trends
 – Traditional Approach for Substrate Noise Analysis

• Background
 – Substrate noise
 – Substrate Noise Analysis

• Early Analysis and Substrate Noise Analysis Flow
 – Inputs
 – Concept
 – Flow
 – Examples

• Flow Application Examples

• Correlation

• Summary
Technology Trends
ASIC Trends

- SoCs incorporate RF, Analogue and digital IPs
- Frequencies increase
- Chip dimensions decrease
 - Increase of generated noise
 - Increase of victims sensitivity
 - Reduced isolation between the two

Rise of substrate noise risks
Traditional Approach for Substrate Noise Analysis

- Relies on final chip design database
- Occurs during the last stages prior to tapeout
- Used for signoff, lessons for next projects or informational purposes

Required: A method to analyze substrate noise earlier
Agenda

• Introduction
 – Technology and ASIC Trends
 – Traditional Approach for Substrate Noise Analysis

• Background
 – Substrate noise
 – Substrate Noise Analysis

• Early Analysis and Substrate Noise Analysis Flow
 – Inputs
 – Concept
 – Flow
 – Examples

• Flow Application Examples
• Correlation
• Summary
Switching Noise’s Propagation Paths
The switching activity involves current consumption and generates voltage variations.

Local activity propagates noise within the entire SoC:
1. Through the Power and Ground Metal Grid
2. Through the Package
3. Through the Substrate layers

Substrate Noise results from a combination of SoC PDN, Package and Substrate Network
Many designs use a Triple-Well CMOS process, i.e. N-well, P-well and deep N-well.

The Substrate RC network is extracted according to the foundry process description:

- Same type wells connect resistively
- Opposite type wells connect through coupling (surface or side)

Thick layers can be decomposed into multiple thicknesses to improve resolution.
Substrate Noise Analysis – SignOff Flow

Data Inputs
- SoC data
 - LEF
 - DEF
 - SPEF
 - GDSS
- Package data
 - layout db
 - pre-extracted model
- Activity data
 - VCD based
 - Vectorless + STA
- Library data
 - Current profiles
 - Intrinsic parasitics
- Technology rules

Noise Simulation
- **1-** Data Import & Setup
- **2-** P/G Grid & Substrate Extraction
- **3-** Power Calculation
- **4-** Dynamic Simulation

Results Exploration
- Simulation vs. Measurements
- Voltage Amplitude per Layer
- Substrate Weakness Map
- Point to Point Resistance & Tracing

RedHawk / Totem

A page from a presentation slide at DesignCon 2015, showing a flowchart for substrate noise analysis, with detailed steps and relevant tools.
Agenda

• Introduction
 – Technology and ASIC Trends
 – Traditional Approach for Substrate Noise Analysis

• Background
 – Substrate noise
 – Substrate Noise Analysis

• Early Analysis and Substrate Noise Analysis Flow
 – Chip level analysis inputs
 – Early analysis concept
 – Flow
 – Examples

• Flow Application Examples
• Correlation
• Summary
In order to analyze full-chip top level substrate noise, following information is required:

- **VLSI**
 - Netlist, Activity, Timing

- **Backend**
 - Chip dimensions, Floorplan, Layout of digital blocks, I/O ring, power network, parasitics

- **Analogue/RF**
 - Layout of Analogue/RF blocks, activity

- **Packaging**
 - Connectivity, parasitics

- Some of this information is ready earlier than the complete PNR database
- Some of this information can be evaluated based on past experience
Early Analysis Concept

Analyze substrate noise on an **emulated** database, generated from available information, experience and assessments

Early analysis on initial data

Final analysis on complete design

Interim analysis 2 on developing data

Interim analysis 3 on developing data

Required: A flow of work to match abilities and needs
Substrate Noise Analysis Flow

• Placing the inputs on a timeline according to plan
• schedule can split by input’s intended usage:
 – Noise generation
 – Noise propagation
• The project’s schedule dictates data availability
• The phases are set according to needs
• Begins early in the design stages
• Defined by the inputs and setup used
• Inputs split between noise generation and noise propagation
• Integrates into the design stages
• Flexible
Flow Example: Design Updates - Pad Locations

The amount of supply pads was reduced.
Substrate noise analysis was required to evaluate the impact.

Original pad location

Reduced pad location
Flow Example: Noise Generation

Circuit Simulation of the Aggressor

Probe location

Aggressor

Victim

Victim (Deep NW)

Noise [v] vs. Time [ns]
Agenda

• Introduction
 – Technology and ASIC Trends
 – Traditional Approach for Substrate Noise Analysis

• Background
 – Substrate noise
 – Substrate Noise Analysis

• Early Analysis and Substrate Noise Analysis Flow
 – Inputs
 – Concept
 – Flow
 – Examples

• Flow Application Examples

• Correlation

• Summary
Flow Applications

- Substrate noise related fixes and design alternatives require changes in
 - Aggressor
 - Floorplan
 - Isolation
 - Layout
 - Activity

- Modifications in these design elements are costly

- Solution: Using the technique of the flow (emulated database)
 - Implementing alternative designs without modifying the real design
 - Evaluating the optional modifications
 - Validating expected trends
Flow Application Example: Aggressor

Comparing noise maps generated by injection at different locations:
A. Original location on the south wall
B. North west corner
C. Left side of the victim

Noise measured on the victim in each case
Comparing substrate noise between two floorplans:

- RF victim is on the north wall
- RF victim is on the east wall
Flow Application Example: Isolation - Guard-Bands

- Adding a guard-bands of P-diffusion and metals on either sides of the RF block
- The guard-bands are grounded
Flow Application Example: Isolation - Guard-Bands - Results

- Effects can be observed both inside and outside of the victim
- Alternative ring architectures may be easily implemented and compared

Noise Scale

Original design Noise map

Addition of side guard bands Noise map
Flow Application Example: Isolation - Deep N-Well

- Deep N-well is introduced under sensitive areas
- Dramatic effects can be observed in the modified areas
- Some occur in adjacent areas
Agenda

• Introduction
 – Technology and ASIC Trends
 – Traditional Approach for Substrate Noise Analysis

• Background
 – Substrate noise
 – Substrate Noise Analysis

• Early Analysis and Substrate Noise Analysis Flow
 – Inputs
 – Concept
 – Flow
 – Examples

• Flow Application Examples

• Correlation

• Summary
What about Predictability?

Prototyping Analysis
Relative comparisons between different implementation scenarios

Sign-Off Analysis
Correlation versus measurements

Noise Coupling Analysis for Advanced Mixed-Signal Automotive IC’s
DAC 2014, Jacob Bakker - NXP Semiconductors
Correlation: Prototyping vs. Final 1/2

Injected Noise:
- 1A Sinusoidal, 800MHz @ 3255, 582 Metal2

Nwell & Pwell Voltage Scale:
- **Red** V > 10mV
- **Purple** V < 1mV

Observations:
- Overall Noise attenuation is similar with some offset
- Differences reside within channels and in Memory cuts

Nwell & Pwell Voltage Scale:
- **Red** V > 0.9mV for Proto or 1mV for Final
- **Purple** V < 0.1mV

Observations:
- Variations inside IP are very similar
- Offset is explained by impedance differences of the path between injection point and victim location
Correlation: Prototyping vs. Final 2/2

<table>
<thead>
<tr>
<th>Prototype Analysis</th>
<th>Vmax</th>
<th>Peak-2-Peak</th>
<th>dbV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victim PW Probe A</td>
<td>1.67E-03</td>
<td>2.86E-03</td>
<td>-7.12E+01</td>
</tr>
<tr>
<td>Victim PW Probe B</td>
<td>8.79E-04</td>
<td>1.24E-03</td>
<td>-7.84E+01</td>
</tr>
<tr>
<td>Victim PW Probe C</td>
<td>7.77E-04</td>
<td>9.47E-04</td>
<td>-8.08E+01</td>
</tr>
<tr>
<td>Victim PW Probe D</td>
<td>7.50E-04</td>
<td>9.52E-04</td>
<td>-8.07460301</td>
</tr>
<tr>
<td>Victim PW Probe E (in DNW)</td>
<td>2.39E-05</td>
<td>5.02E-05</td>
<td>-1.06E+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PnR Analysis</th>
<th>Vmax</th>
<th>Peak-2-Peak</th>
<th>dbV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victim PW Probe A</td>
<td>1.35E-03</td>
<td>2.34E-03</td>
<td>-7.33E+01</td>
</tr>
<tr>
<td>Victim PW Probe B</td>
<td>8.14E-04</td>
<td>1.23E-03</td>
<td>-7.89E+01</td>
</tr>
<tr>
<td>Victim PW Probe C</td>
<td>9.44E-04</td>
<td>1.42E-03</td>
<td>-7.76E+01</td>
</tr>
<tr>
<td>Victim PW Probe D</td>
<td>8.21E-01</td>
<td>1.23E-03</td>
<td>-78.8703729</td>
</tr>
<tr>
<td>Victim PW Probe E (in DNW)</td>
<td>3.75E-05</td>
<td>7.80E-05</td>
<td>-1.03E+02</td>
</tr>
</tbody>
</table>

Probes inside victim IP from Prototype db

Probes inside victim IP from Final db

PW’s Voltage Waveforms over time
Agenda

• Introduction
 – Technology and ASIC Trends
 – Traditional Approach for Substrate Noise Analysis

• Background
 – Substrate noise
 – Substrate Noise Analysis

• Early Analysis and Substrate Noise Analysis Flow
 – Inputs
 – Concept
 – Flow
 – Examples

• Flow Application Examples

• Correlation

• Summary
Summary

• Early Substrate analysis
 – Often required
 – Depends on input quality and design knowledge
 – Reliable based on correlation

• Flow
 – Accommodate to the project’s schedule
 – Flexible

• Method (emulated database)
 – “Cheap” evaluation of alternative designs
Thank you